Fundamentals of Thermal Resistance

Fundamentals of Thermal Resistance

Fundamentals of Thermal Resistance

 

Today’s guest blog on the fundamentals of thermal resistance is from Dr. James Stevens, Professor Mechanical Engineering at the University of Colorado. Dr. Stevens specializes in numerical and analytical heat transfer analysis covering both steady-state and transient situations with applications to thermal history, thermal response, electronic cooling, temperature profiles, thermal design, and heat flow rate determination.

The Thermal Resistance Analogy

Thermal resistance is a convenient way of analyzing some heat transfer problems using an electrical analogy in order to make complicated systems easier to visualize and analyze. It is based on an analogy with Ohm’s law which is:

Ohms Law

In Ohm’s law for electricity, “V” is the voltage which drives a current of magnitude “I”. The amount of current that flows for a given voltage is proportional to the resistance (Relec). For an electrical conductor, the resistance depends on the material properties (copper tends to have a lower resistance than wood, for example) and the physical configuration (thick short wires have less resistance than long thin wires).

pic2

 

For one-dimensional, steady-state heat transfer problems with no internal heat generation, the heat flow is proportional to a temperature difference according to this equation:

pic3

where Q is the heat flow, k is the material property of thermal conductivity, A is the area normal to the flow of heat, Δx is the distance that the heat flows, and ΔT is the temperature difference driving the heat flow.

If we create an analogy by saying that electrical current flows like heat, and saying that voltage drives the electrical current like the temperature difference drives the heat flow, we can write the heat flow equation in a form similar to Ohm’s law: pic4where Rth is the thermal resistance defined as: pic5Just as with the electrical resistance, the thermal resistance will be higher for a small cross-sectional area of heat flow (A) or for a long distance (Δx).

Rationale

Now, why bother with all that? The answer is that thermal resistance allows us to solve somewhat complicated problems in relatively simple ways. We’ll talk more about different ways in which it can be used, but first let’s look at a simple case in order to illustrate the benefit.

Suppose that we want to calculate the heat flow through a wall composed of three different materials, and we know the surface temperatures at each outside surface, TA, and TB, and the material properties and geometries.

pic6

 

We could write the conduction equation for each material:

pic7

 

Now, we have three equations, and three unknowns: T1, T2, and Q. For this case it wouldn’t be too much work to algebraically solve for those three unknowns, however, if we use the thermal resistance analogy, we don’t even have to do that much work:

pic8

wherepic9

and we can solve for Q in a single step.

Combining Thermal Resistances

This simple example showed how to combine multiple thermal resistances in series which is the same structure as in the electrical analog:

pic10

Just like electrical resistances, thermal resistances can also be combined in parallel, or in both series and parallel:

pic11

pic12

pic13

Beyond Conduction

So far, we’ve talked about the thermal resistance associated with conduction through a plane wall. For steady-state, one-dimensional problems, other heat transfer equations can be formulated into a thermal resistance format. For example, examine Newton’s Law of Cooling for convection heat transfer:

pic15

where Q is the heat flow, h is the convective heat transfer coefficient, A is the area over which heat transfer occurs, Ts is the surface temperature on which the convection is taking place, and Tinf is the free-stream temperature of the fluid. As with conduction, there is a temperature difference driving a heat flow. For this case, the thermal resistance would be:

pic16

Similarly, for radiative heat transfer from a gray body:

pic17

where Q is the heat flow, ε is the emissivity of the surface, σ is the Stefan-Boltzmann constant, Ts is the surface temperature of the emitting surface, and Tsurr is the temperature of the surroundings. By factoring the expression for temperature, the thermal resistance can be written: pic18

Advantage: Easy Problem Setup

Thermal resistance formulations can make the arrangement of a quite complex problem quite simple to set up. Imagine, for example, that we are trying to calculate the heat flow from a liquid stream of a known temperature through a composite wall to an air stream with convection and radiation occurring on the air side. If the material properties, heat transfer coefficients, and geometry are known, the equation set-up is obvious:

 

 

 

pic20

 

Now, to solve this particular problem might involve an iterative solution since the radiative thermal resistance contains the surface temperature inside of it, but the setup is simple and straightforward.

Advantage: Problem Insight

The thermal resistance formulation has the additional advantage of making it very clear which parts of the model are controlling the heat transfer, and which parts are unimportant, or perhaps even negligible. As a concrete illustration, let’s suppose that in the last example the thermal resistance on the liquid side was 20 K/W, that the first layer in the composite wall was 1 mm thick plastic with a thermal resistance of 40 K/W, that the second layer consisted of 2 mm thick steel with a thermal resistance of 0.5 K/W, and that the thermal resistance for convection to the air was 200 K/W, and the thermal resistance to radiation to the surroundings was 2500 K/W coming from a surface with emissivity of 0.5.

pic21

 

We can understand a lot about the problem by just considering the thermal resistance. For example, since the radiation resistance is in parallel with a much smaller convection resistance, it is going to have a small effect on the overall thermal resistance. Increasing the emissivity of the wall clear to unity would only improve the total thermal resistance by 5%. Or, ignoring radiation completely would cause an error of only 6%. Similarly, the thermal resistance of the steel is in series, and is tiny compared with the other resistances in the system, so no matter what is done to the metal layer it isn’t going to have much effect. Changing from steel to pure copper, for example, would only improve the overall thermal resistance by 0.2%. Finally, it is clear that the controlling thermal resistance is convection on the air side. If it were possible to double the convection coefficient (by, say, increasing the velocity of the air) that step alone would decrease the overall thermal resistance by 36%.

Beyond Plane Wall Conduction

Thermal resistance can also be used for other conduction geometries as long as they can be analyzed as one-dimensional. The thermal resistance to conduction in a cylindrical geometry is:

pic22

where L is the axial distance along the cylinder, and r1 and r2 are as shown in the figure.

Thermal resistance for a spherical geometry is:

pic23

with r1 and r2 as shown in the figure.

pic24

Conclusion

Thermal resistance is a powerful and useful tool for analyzing problems that can be approximated as 1-dimensional, steady-state, and that do not have any sources of heat generation.


Please contact Celsia with your next thermal design challenge. We specialize in the design and production of heat sinks using liquid two phase devices: heat pipes and vapor chambers.

Related Links

Using Fans & Heat Pipes to Cool Smartphones

Using Fans & Heat Pipes to Cool Smartphones

Using Fans & Heat Pipes to Cool Smartphones

 

I recently read an interesting article that explored the practical reasons behind the use of different materials for smartphone enclosures: polycarbonate, glass, and metal. They included tactile preferences, radio attenuation, and surprisingly, thermal conductivity. While I’m pleased the mainstream press is touching on this issue, I’m sure the vast majority of smartphone users have no idea of the lengths to which engineers are going to keep these devices cool.

Smartphone Thermal Image

In addition to thermally aware power management algorithms used to scale back performance in the interest of lower temperatures, engineers are extending their thermal tool kit beyond EMI shields/spreaders and aluminum or graphite-carbon sheets to include the use of tiny fans and ultra-thin heat pipes to increase thermal efficiency.

In 2012, Apple submitted a patent application for a device that uses the phone’s vibrator motor to power a fan. While it’s yet to be implemented, the company is clearly devoting resources to tackling this problem. Additionally, Sunon is marketing a 3mm thick fan which it claims is ideal for smartphones. Given the early trend towards waterproofing hand held devices, further reducing air-flow, and the inherent problems with active cooling devices, I’m still a bit skeptical about this solution.

Fans_for_Smartphones

Smartphone Fans

I’m much more enthusiastic about the renewed activity in designing micro-thin two phase heat spreaders. For decades, the market for heat pipes and vapor chambers was almost exclusively at the high end where powers and power densities were 50-100 watts and higher into kilowatts. To handle this type of power, thickness of the two phase device must usually be greater than around 2.5mm. Early products and technical development that were thinner include the following:

  •  1980’s – Japanese heat pipe companies were selling grooved heat pipes at about 1mm while companies in the US were producing sintered wick two phase devices of 1.5mm for military applications.

Thin Two Phase Devices of the 1980s

  • 1990’s – Thermacore patent for thin-flexible heat pipes using plastic coated metal foil sheets in combination with a porous foam. Thickness in the 1mm range. Plastic Coated Metal Foil Heat Pipe
  • 2000’s – Celsia etched micro loop vapor chamber as thin as 0.7mm.

Celsia Etched Vapor Chamber 0.7mm

Within the last year and a half, NEC and Sony have both introduced smartphones using an ultra-thin heat pipe. Reported to be in the 0.6mm range at the thinnest point, these two phase devices spread and transport heat from the main processing unit. Presumably this was done to implement slightly more liberal power management techniques as well as to reduce enclosure temperature while still allowing the quad-core Snapdragon processor to perform at near peak conditions. Weight gain from switching from graphite-carbon must have seemed an acceptable trade-off.

Smartphones with Heat Pipes

NEC Medias X N-06E (L) and Sony Xperia Z2 (R)

So, where does the market stand for these products today? Most handheld OEMs are pushing the market to move to thinner solutions.  Just a few years ago 1.0 to 1.5mm was considered thin but still too thick for the consumer market. Now we’re seeing commercialized, high volume products approaching 0.5mm.

Technical papers presented on the topic show normal materials HPs and VCs made from copper, getting to 0.6mm and alternative materials going to 0.5mm and below. Pi-Mems in Santa Barbara is doing interesting work with etched Titanium as thin as 0.5mm. The strength of the titanium and it’s compatibility with water make a good combination to get to thinner structures. Additionally, The University of Colorado under Dr. Lee is miniaturizing the use of metalized plastics resulting in 0.25mm thick flexible vapor chambers. The challenge of these ultrathin structures is the pressure drop in the vapor causing high thermal resistances compared to their thicker cousins.

Micro-Thin Vapor Chambers

As with any fast moving technologies the product designers at the OEMs are in a race to move the technology forward. This drives the development of supporting technologies trying to capture these dollars.  For main stream applications in 2015, 0.6mm thick, flattened copper water heat pipes are going to be the new standard. By the following year, I’m sure it will be even thinner.

Related Links